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SUMMARY

An algorithm based on the finite element modified method of characteristics (FEMMC) is presented to
solve convection–diffusion, Burgers and unsteady incompressible Navier–Stokes equations for laminar
flow. Solutions for these progressively more involved problems are presented so as to give numerical
evidence for the robustness, good error characteristics and accuracy of our method. To solve the
Navier–Stokes equations, an approach that can be conceived as a fractional step method is used. The
innovative first stage of our method is a backward search and interpolation at the foot of the
characteristics, which we identify as the convective step. In this particular work, this step is followed by
a conjugate gradient solution of the remaining Stokes problem. Numerical results are presented for:

(a) Convection–diffusion equation. Gaussian hill in a uniform rotating field.
(b) Burgers equations with viscosity.
(c) Navier–Stokes solution of lid-driven cavity flow at relatively high Reynolds numbers.
(d) Navier–Stokes solution of flow around a circular cylinder at Re=100.
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1. INTRODUCTION

The idea of using the method of characteristics to integrate convective terms in transport
diffusion equations has a long tradition in computational fluid dynamics. The conventional
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manner of implementing this method is strictly based upon the Lagrangian description of
the flow. Each mesh-point is identified with a fluid particle at time t0 and followed at
subsequent times t1, t2, . . . , tn as the flow progresses. Thus, the solution of the transport–
diffusion equation is obtained by solving the diffusion operator on the new meshes. The
advantages of this pure Lagrangian approach over the conventional time stepping Eulerian
schemes are numerical stability and absence of convective terms. The absence of convective
terms is an interesting feature from a numerical point of view since, as is well known, these
terms are a source of numerical difficulties. However, the deformation that the initial mesh
undergoes as time progresses might lead to deterioration of the accuracy of the numerical
solution. This drawback can be partially avoided if the mesh is regenerated after a few time
steps. On the other hand, mesh regeneration followed by an interpolation of the solution
from the old mesh to the new one can be very costly.

The modified method of characteristics (MMC) is an interpretation of the Lagrangian
approach that overcomes the previously mentioned shortcoming—mesh deformation—while
maintaining its good properties. The MMC does not follow fluid particles forward in time,
instead it does so backwards. It seeks the position at time tn of the particles that will reach
the mesh-points at time tn+1. Thus, the diffusion operator is always solved on the fixed
initial mesh, avoiding the need for mesh regeneration.

The combination of finite elements and MMC for the solution of the Navier–Stokes
equations was first introduced by Benqué et al. [1], Douglas and Russell [2] and Pironneau
[3]. In all these works, the evaluation of the position of the fluid particles at the foot of the
characteristic is carried out by an L2-projection on the finite element space and the solution
of the diffusion/Stokes step is advanced in time by a first-order Euler implicit scheme. As
recognized in references [2,3] and other papers, the most difficult part of this approach is
the evaluation of the integrals in the L2-projection.

In this paper we have substituted the L2-projection at the position of the fluid particles
at tn by the finite element interpolation using the basis functions of the velocity. This
efficient, stable and more economical alternative to the L2-projection is achieved by using
the search–locate algorithm developed by Allievi and Bermejo [4]. The implementation of
this approach in the context of transport–diffusion equations is clearly explained in pseudo-
code format. The Stokes step is discretized in time using a Crank–Nicolson method for all
terms involving velocity and external forcing. A first-order Euler implicit scheme is used for
the pressure. In this work, the numerical solution of the Stokes system was carried out by
the preconditioned conjugate gradient method proposed by Cahouet and Chabard [5] and
by Glowinski and collaborators [6,7]. However, a number of other numerical procedures
can be used to solve this step of our method.

The organization of the paper is as follows. Section 2 presents the model equations and
appropriate boundary conditions. Section 3 introduces the semi-discrete version of the
method of characteristics in relation to both the convective step and the weak solution of
the Stokes step of our algorithm. Finite element mathematical generalities and fully discrete
weak formulations are presented in Section 4. Finally, in Section 5 we apply our method to
the solution of the test cases outlined in the summary.
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2. THE NAVIER–STOKES EQUATIONS

Let V¦Rd (d=2 or 3) be an open bounded domain with boundary G sufficiently smooth. We
shall assume that G=G1@G2, with the two subsets G1 and G2 satisfying G1SG2=0. The
Navier–Stokes equations describing unsteady flow of an incompressible Newtonian fluid are:

Du
Dt

−nDu+9p= f in V× (0, T) (1)

9 ·u=0 in V× (0, T) (2)

These equations are solved subject to the initial condition

u(x, 0)=u0(x) in V (3)

and the boundary conditions

u(x, t)=g1(x, t) on G1 (4)

−pn+n
(u
(n

=g2(x, t) on G2 (5)

where n is the outward unit normal to the boundary G. Hereafter, vector fields shall be
denoted by boldface letters and generic points of V( =V@G as x= (x1, . . . , xd). The notation
used in Equations (1) and (2) is the following:

(i) u= (ui)d
i=1 is the velocity, p is the pressure and n is the kinematic viscosity coefficient.

(ii) Du/Dt=(u/(t+u · 9u denotes the material derivative of u. It measures the rate of
change of u as seen by an observer moving with the fluid particles.

(iii) f= ( fi)d
i=1 is a density of external forces.

Notice that Equation (5) is a condition of the traction vector t= −pn+n((u/(n). As
discussed by Gresho [8], it may result in a better characterization of the outflow boundary
condition.

The existence and possible uniqueness of the solution to the system (Equations (1)–(5))
has been studied in a number of books and papers by, among others, Temam [9], La-
dyzhenskaya [10], Heywood [11] and Lions [12]. Computing its numerical solution is not
trivial due its non-linear structure, the incompressibility condition (Equation (2)) and the
coupling of the equations through the terms u · 9u and 9 · u.

In order to overcome some of these difficulties, we introduce in this paper a finite
element modified method of characteristics (FEMMC) scheme. As we shall see below, this
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scheme belongs to the category of methods of fractional steps. The first stage of our
method is a Lagrangian step followed by an Eulerian procedure where a Stokes problem is
solved.

3. THE SEMIDISCRETE CHARACTERISTIC ALGORITHM

Let the time interval [0, T ] be divided into N intervals [tn, tn+1] of length Dt such that NDt=T.
For each interval [tn, tn+1] we integrate Equations (1)–(5) along the trajectories of the fluid
particles as described in the following developments.

We introduce the notation X(x, tn+1; t) to denote the position at time t of a fluid particle
that reaches the point x�V( at time tn+1. The trajectory of such a particle satisfies the equation

Á
Ã
Í
Ã
Ä

dX
dt

(x, tn+1; t)=u(X(x, tn+1; t), t)

X(x, tn+1; tn+1)=x
(6)

Note that X(x, tn+1; t) is the point at time t corresponding to the characteristic curve of the
operator ((/(t)+u · 9. Assuming that u(·, t) satisfies the conditions for the existence of a
unique solution of Equation (6) for all time t, see [13], we have that for tn5 tB tn+1

X(x, tn+1; tn)=x−
& tn+1

tn

u(X(x, tn+1; t), t) dt (7)

It can be shown that Equation (7) defines a continuous transformation of V( onto itself
provided that homogeneous Dirichlet boundary conditions for the velocity are used. For any
(x, t)�V( × [tn, tn+1], we then integrate Equation (1) along the characteristics to obtain

u(x, tn+1)=u(X(x, tn+1; tn), tn)+n
& tn+1

tn

Du(X(x, tn+1; t), t) dt

−
& tn+1

tn

9p(X(x, tn+1; t), t) dt+
& tn+1

tn

f(X(x, tn+1; t), t) dt (8)

It is clear that the evaluation of the integrals in Equation (8) has to be approximated by a
quadrature rule. In so doing, we shall obtain a time-marching algorithm to approximate un+1

and pn+1. A number of characteristic Galerkin schemes have been proposed by various
authors to integrate Equation (8), see for instance [3,14]. Using the first-order upper limit
quadrature rule to integrate Equation (8) yields the characteristic backward Euler scheme.
Using quadratic interpolation at the feet of the characteristics and assuming sufficient
regularity, Bermejo [15] showed that Crank–Nicolson is optimal for the velocity. Therefore, in
this work we propose a scheme that is obtained by combining the trapezoidal rule for the
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viscous term integral with the upper limit rule for the pressure term integral. Thus, a
characteristic Crank–Nicolson scheme for the velocity and a first-order implicit scheme for
pressure are obtained. Hence, we can formulate our time-marching scheme to integrate
Equations (1)–(5) as follows.

Given u0, for any x�V( and n=0, 1, . . . , N
(i) Evaluate

X(x, tn+1; tn)=x−
& tn+1

tn

u(X(x, tn+1; t), t) dt. (9)

(ii) Compute

u*n=un(X(x, tn+1; tn)). (10)

(iii) Solve

un+1=u*n+
Dtn
2

[Dun+1+Du*n]−Dt9pn+1+
Dt
2

[fn+1+ fn(X(x, tn+1; tn))], (11)

9 ·un+1=0, (12)

subject to

u0=u0(x) in V, (13)

un+1=g1
n+1 on G1, (14)

−pn+1n+n
(un+1

(n
=g2

n+1 on G2. (15)

We shall now consider in further detail steps (i) and (ii) of this scheme, and postpone until
the next section the description of the numerical evaluation of step (iii).

3.1. Computation of X(x, tn+1; tn)

A crucial step in the application of our method is to accurately compute the points
X(x, tn+1; tn), which are the feet of the characteristic curves of the operator du/dt. Bermejo
[15] has shown that this is necessary in order to maintain an optimal order of accuracy.
These analyses indicate that X(x, tn+1; tn) must be computed with an error at least one
order higher than that of the algorithm used to approximate the solution u(x, tn+1). Some
authors estimate X(x, tn+1; tn) by a second-order explicit Runge–Kutta scheme, which we
have found not to be accurate enough to maintain a particle on its curved trajectory. A
better choice is a fourth-order explicit Runge–Kutta scheme. However, it is inconvenient
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that the velocity has to be extrapolated at both, tn+1/2 and tn+1. Pironneau [3] has pro-
posed in the context of finite elements an explicit first-order Euler scheme to compute
X(x, tn+1; tn) within each element. In this paper, we used a method first proposed by
Temperton and Staniforth [16] in the framework of semi-Lagrangian schemes to integrate
the weather prediction equations. In our own experience, this is a very accurate and
efficient scheme when combined with the recently developed search–locate algorithm
[4]. Turning our attention to Equation (7), we are particularly interested in computing
X(x, tn+1; tn) corresponding to the mesh-points {xi}MV

i=1. Therefore, by virtue of the unique-
ness of the solution of Equation (7), there is a unique point Xi(xi, tn+1; tn) in V( , associated
with the grid-point xi. In general, Xi(xi, tn+1; tn) will not coincide with the spatial position
of a grid-point. A requirement is then that the scheme to compute Xi(xi, tn+1; tn) be
provided with a search–locate algorithm to find the host element where such a point is
located. A general, efficient and easy way to implement a scheme to perform this step in
arbitrary grids is presented in [4]. We note that this method does not assume the character-
istics to be straight lines. We approximate the characteristics by the mid-point rule together
with fixed point iteration for greater accuracy and stability. Error estimates are given
below. Then, to compute Xi(xi, tn+1; tn), define

ai=xi−Xi(xi, tn+1; tn). (16)

If we approximate the integral in Equation (7) by the mid-point rule, we have:

ai=Dtu(Xi(xi, tn+1; tn+1/2),tn+1/2)+O(Dt3). (17)

Note that Xi(xi, tn+1; tn+1/2) is the mid-point of the arc that joins the points (xi, tn+1) and
(Xi(xi, tn+1; tn), tn). Then we write

Xi(xi, tn+1; tn+1/2)=xi−
1
2

ai+O(Dt2) (18)

and

u(Xi(xi, tn+1; tn+1/2), tn+1/2)=u
�

xi−
1
2

ai, tn+1/2
�

+O(Dt2). (19)

Hence, substitution of Equation (18) into Equation (17) gives

ai=Dtu
�

xi−
1
2

ai, tn+1/2
�

+O(Dt3). (20)

Note that the velocity u in Equation (19) is evaluated at time tn+1/2. We carry out such an
evaluation using the Adams–Bashforth formula
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u(x, tn+1/2)=
3
2

u(x, tn)−
1
2

u(x, tn−1)+O(Dt2), (21)

recommended by Temperton and Staniforth [16] in relation to their semi-Lagrangian nu-
merical weather prediction models. Based on an algorithm introduced by Robert [17], they
also proposed the following iterative scheme to compute ai.

Set

a i
0=Dt

�3
2

u(xi, tn)−
1
2

u(xi, tn−1)
n

, (22)

Then a i
(0), compute for k=0, 1, . . .

a i
(k+1)=Dt

�3
2

u
�

xi−
1
2

a i
(k), tn

�
−

1
2

u
�

xi−
1
2

a i
(k), tn−1

�n
. (23)

Now, if we set

e i
(k)=ai−a i

(k),

e (k)=max�e i
(k)�,

it follows from Equations (21) and (23) and a Taylor expansion that

e (k+1)5
1
4

KDte (k). (24)

when K=max�9u�. Hence, if KDt is sufficiently small, we can conclude from Equation (24)
that a few iterations (three or four) are enough to approximate ai up to O(Dt3).

3.2. The Stokes problem

The computation of the total derivative by the MMC leads to the solution of the following
Stokes-like problem:

un+1−bDun+1+Dt9pn+1=Fn+1 in V, (25)

9 ·un+1=0 in V, (26)

u0=u0(x) in V, (27)
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un+1=g1
n+1 on G1, (28)

−pn+1n+n
(un+1

(n
=g2

n+1 on G2 (29)

where

b=
1
2

Dtn,

Fn+1=u*n+bDu*n+
Dt
2

[fn+1+ fn(X(x, tn+1; tn))].

In order to facilitate the presentation of the numerical procedure of the next section, we
shall next formulate the weak solution of Equations (25)–(29). We first define the spaces
where the solution is found and introduce some mathematical notation. Let the subsets

Vg¦H1(V)d,

V0¦H1(V)d,

be defined as

Vg={u�H1(V)d�u=g1 on G1},

V0={u�H1(V)d�u=0 on G1}. (30)

H1(V)d is the Hilbert space of vector functions with first derivatives in L2(V). Let the space
for the pressure Q=L2(V)/R be defined as

Q={[p ]� Öp, q�L2(V)p, q� [p ][p−q=constant} (31)

Note that Q is a quotient space whose elements are cosets of L2(V) functions. If no
confusion arises, it is customary to denote each coset [p ] by its representative p. In particu-
lar cases, G1@G2=G1, i.e., G2=¥, Q is defined as

Q=L0
2(V)=

!
p�L2(V)�&

V
p dx=0

"
. (32)

We shall now introduce the notation ( f, g)=	V fg dV and �f, g�G=	G fg dG. Next, we
define the following bilinear forms:
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a : H1(V)d×H1(V)d�R

b : Q×H1(V)d�R

as

a(u, v)= (u, v)+b(9u, 9v), Öu, v�H1(V)d,

b(q, v)= (q, 9 ·v), Öq�Q and v�H1(V)d. (33)

The weak formulation of the problem is then as follows. Find un+1�Vg and pn+1�Q such
that for any v�V0 and q�Q

a(un+1, v)−Dtb(pn+1, v)= (Fn+1, v)+�g2
n+1, v�G2

b(q, un+1)=0, (34)

It can be proven (see [18]) that there exists a unique solution to Equation (34) that satisfies
the inf–sup condition. We have used in this paper a conjugate gradient algorithm (CGA)
devised by Glowinski and his collaborators [6,7] to obtain the numerical solution of Equa-
tion (34).

4. THE FINITE ELEMENT SOLUTION

We shall describe in this section the finite element formulation of the semi-discrete scheme.
To approximate the solution (u, p), we use Taylor–Hood finite elements (P2/P1 or Q2/Q1,
i.e., quadratic polynomials for the velocity and bilinear polynomials for the pressure on
simplices or quadrilaterals respectively). For this class of elements, both velocity and pres-
sure are continuous over the element’s boundary. It is well known that for such elements
the discrete velocity and pressure fields satisfy the inf–sup condition [19–21]. Let us now
start by describing some generalities related to finite element theory.

For convenience, let V be a convex domain and Dh a regular partition of V in small
elements {kj}NE

j=1. Let us assume these elements to be quasi-uniform in the sense of [22], i.e.,
they satisfy the minimum angle condition. If ki and kj are two different elements of Dh,
then some of the following conditions are satisfied:

kiSkj=

Á
Ã
Í
Ã
Ä

¥, void intersection, or
Gij, a boundary in common, or
Pij, a vertex.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 439–464
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The conforming finite element spaces for velocity and pressure are:

Vh={uh�C0(V( )d�uh �kj
�S(kj) Öj},

(35)
Qh={ph�C0(V( )d�ph �kj

�R(kj) Öj}.

where S(kj) and R(kj) are spaces of polynomials defined on kj. Specifically,

S(kj)=P2(kj) for simplices,
S(kj)=Q2(kj) for quadrilaterals,
R(kj)=P1(kj) for simplices,
R(kj)=Q1(kj) for quadrilaterals.

In addition, it is useful to define the following finite dimensional spaces:

Vh0={uh�Vh �uh �G1
=0},

(36)
Mh={wh�Qh �wh �G2

=0}.

Remark 4.1. For s and r integers such that 15s52 and r=1, if u and p are sufficiently
smooth, then the finite element solutions uh and ph satisfy the following error bounds:


u−uh
0+h
9(u−uh)
05K1h
s+1
u
s+1,


p−ph
05K2h
r
p
H r/R,

where K1 and K2 are constants, and ��o��0, ��o��s+1, and ��o��H r/R denote the norms in the
Hilbert spaces L2(V), Hs+1(V) and Hr(V)/R respectively. These estimates mean that if (u, p)
are sufficiently regular, then (uh, ph) will approximate (u, p) up to (O(h3), O(h2)) in space.

Remark 4.2. At each time tn, uh(x, tn)�Vh satisfies the Lipschitz condition, i.e., Öx1, x2�V
there exists a constant L such that

max�uh(x1, tn)−uh(x2, tn)�5L �x1−x2�

In addition, for any (x, tn):

max�uh(x, t)�5�.

These two conditions are important in order to approximate the unique solution of the
departure points.

We can formulate the finite element solutions to un(x) and pn(x) as

uh
n(x)= %

MV

j=1

Uj
nuj,

(37)ph
n(x)= %

MP

k=1

Pk
nvk.
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In Equation (37), {uj} and {vk} are the basis function sets for Vh and Qh respectively, and Uj
n

and Pk
n are the corresponding nodal values of Un

h(x) and ph
n(x). We can now introduce the

algorithm to compute the fully approximate solution of the Navier–Stokes equations. Follow-
ing the formulation described for the semi-discrete scheme, we distinguish two steps. In the
first one, termed the convective step, we compute the departure points X(x, tn+1; tn) and the
velocity u*n(x)=un(X(x, tn+1; tn)). The second step corresponds to the solution of the Stokes
problem. If the algorithm is envisioned in this manner, it can be conceived as a fractional-step
method.

4.1. Fully discrete algorithm for the con6ecti6e step

We shall hereafter use the notation Xh
n to denote the approximate value of the departure points

Xh(x, tn+1; tn). In referring to the departure point corresponding to the i-th mesh-point x=xi,
the notation will be Xhi

n . It is clear that the departure points of interest are those associated
with the mesh-points {xi}i=1

MV . Then, by virtue of Equation (16) we set

Xhi
n =xi−ahi, (38)

where ahi is calculated by the iterative procedure

ahi
(k+1)=

Dt
2
�

3uh
n�xi−

1
2

ahi
(k)�−uh

n−1�xi−
1
2

ahi
(k)�n. (39)

The values un
h(xi−

1
2ahi

(k)) and un−1
h (xi−

1
2ahi

(k)) are obtained by finite element interpolation
according to Equation (37). Note that an important ingredient to carry out the iterative
procedure (Equation (39)) is the identification of the element where xi−

1
2ahi

(k) is located. To
compute the velocity u*n

h (x)=un
h(Xh

n), we set

u*n
h (x)= %

MV

i=1

U*i nui(x). (40)

The values {U*n
i } are evaluated by finite element interpolation of uh

n(x) at the feet of the
characteristics {Xhi

n } determined in Equation (38). Huffenus and Khaletzky [14] and Temper-
ton and Staniforth [16] also employ interpolation to calculate the velocity at the points {Xn

hi}.
A theoretical analysis of the interpolation procedure to compute uh*n(x) was presented by
Bermejo in [15]. Note that the conventional characteristic Galerkin schemes of [2,3] calculate
uh*n(x) by an L2-projection on the space of the velocity Vh—a projection that may be
computationally expensive to achieve.

The convective step is more easily visualized in a pseudocode format. As mentioned
previously, a search–locate algorithm for the fluid particles at the feet of the characteristics has
to be provided. In the developments below, the subroutine slalg identifies the host elements of
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the fluid particles at the feet of the characteristics. It also provides the co-ordinates of these
points referred to the reference element. The slalg algorithm, described in detail by Allievi and
Bermejo in [4], uses a Newton method to invert a bijective map from the reference element into
a given mesh element, together with a criterium to move from element to element in the mesh.
Computation of the values {Ui*n} is then carried out as follows,

input MV, n, NODES, ISE, ITFCH, ITSLA, {Ui
n}, {Ui

n−1}, {xi}, o1, o2, Dt

MV : number of velocity nodes.
n : number of velocity nodes per element.
NODES : two-dimensional array of node connectivity for each element.
ISE : vector array containing neighbor element number for each element.
ITFCH : maximum number of iterations for calculation of the feet of the characteristics (see
Section 3.1).
ITSLA : maximum number of iterations for search–locate Newton method.
Un

i , Ui
n−1: nodal values of velocities at previous two time steps.

xi : mesh points co-ordinates.
o1: tolerance for convergence of calculation of foot of characteristic.
o2: tolerance for convergence of search–locate Newton method.
Dt : time step
IHE : vector array containing host elements i.e. of points Xi

hi.
x̄: vector array containing co-ordinates of points Xi

hi.
z: working array to store values a i

k at each iteration k (see Equation (23)).

Part (A) of the pseudocode starts by computing the extrapolated values of the velocity u
according to Equation (21), the values of a i

(0) according to Equation (22) and the co-ordinates
x̄i=xi−

1
2a i

(0).

(A)

Á
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ä

for i=1, . . . , MV do

Vi�
1
2

(3Ui
n−Ui

n−1) (Store V in Un−1)

zi�DtVi

x̄i�xi−
1
2

zi

end do

Part (B) of the pseudocode performs the iterative procedure described by Equation (23). With
input (x̄, NODES, ISE, IHE, o2, ITSLA), function slalg identifies the elements ie hosting the
points xi−

1
2ai. On exit, slalg returns the array IHE containing all ie as well as the array x̄

overwritten with the reference element co-ordinates of the points xi−
1
2ai. With this informa-

tion this section proceeds to apply Equation (23) for k=1, 2, . . . , ITFCH. The finite element
interpolation is performed on the reference element by the expression s=s+DtViejlj(x̄), where
lj are the basis functions for velocity. Following interpolation, the remainder of this section
tests convergence.
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(B)

for k=1, 2, . . . ITFCH do

call slalg (x̄, NODES, ISE, IHE, o2, ITSLA)

for i=1, 2, . . . , MV do

ie=IHE(i )

s=0.0

for j=1, 2, . . . , n do

iej=NODES (ie, j )

s=s+DtViejlj(x̄j)

end do

x̄i�s

end do

if max �x̄i−zi �\o1 then

for i=1, 2, . . . , MV do

zi� x̄i

x̄i�xi−
1
2

zi

end do

ELSE

for i=1, 2, . . . , MV do

zi� x̄i

x̄i�xi−zi

end do

output {x̄i}

end if

end do

Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
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Ã
Ã
Ã
Ã
Ã
Ã
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Ã
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Ã
Ã
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Part (C) of the pseudocode describes the procedure to evaluate Ui*n (see Equation (40)) by
finite element interpolation at the points Xi

hi. Note that the structure of this section is the same
as in Part (B) before testing convergence.

(C)

Á
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ä

call slalg (x̄, NODES, ISE, IHE, o2, ITSLA)

for i=1, 2, . . . , MV do

ie=IHE(i )

s=0.0

for j=1, 2, . . . , N do

iej=NODES (ie, j )

s=s+Uiej
n−1lj(x̄j) (Remember V is stored in Un−1)

end do

Ui
n−1�Ui

n (Switch arrays)

U*i n�s (Store U*i nin Ui
n)

end do

output {U*i n}

4.2. Fully discrete algorithm for the Stokes step

The finite element formulation for the Stokes problem (Equations (25)–(29)) is as follows.
Find (uh

n+1, ph
n+1)�Vh0×Qh, such that for any (vh, qh)�Vh×Qh

a(uh
n+1, vh)−Dtb(ph

n+1, vh)= (Fh
n+1, vh)+�g2h

n+1, vh�G2
, (41)

b(qh, uh
n+1)=0.

where

uh
0=u(x, 0),

un
n+1�G1

=g1h
n+1,

−ph
n+1 ·n+n(9uh

n+1 ·n)�G2
=g2h

n+1,

(Fh
n+1, vh)=

�
u*h n+bDu*h n+

Dt
2

[fn+1+ f*h n], vh
�

,

f*h n(x)= %
MV

i=1

f*i nui(x).
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The values fi*n are the values of fn(Xhi(xi, tn+1; tn)) calculated by finite element interpolation as
we did with Ui*n.

In this work, we have applied the finite element version of the CGA in [6,7] to obtain the
numerical solution of Equation (41). Note that we only solve a number of symmetric algebraic
systems of linear equations.

We now conclude this section where we have described the essentials of our FEMMC
together with its implementation in the context of the fully discrete Stokes problem. In our
particular case, we have solved the Stokes system using the method described in [6,7].
However, other solvers will suffice to carry out this step. In the section that follows, we shall
apply it to benchmark scenarios that are customarily used in testing numerical algorithms
leading to the solution of the Navier–Stokes equations.

5. NUMERICAL RESULTS

In this section, we present a series of numerical tests with the intention of clearly demonstrat-
ing the performance of our FEMMC algorithm and of presenting a comparison with other
numerical and experimental results. Before introducing results for the Navier–Stokes equa-
tions in Section 5.3, we shall apply our interpolation algorithm to the solution of the
convection–diffusion and viscous Burgers equations. Section 5.1 and 5.2 describe these two
problems.

5.1. Con6ection–diffusion equation. The Gaussian hill

The mathematical formulation of this problem is as follows:

(c
(t

+u
(c
(x

+v
(c
(y

=n
�(2c
(x2+

(2c
(y2

�
in V× (0, T) (42)

with the boundary and initial conditions

(c
(n

=0 (43)

c(x, 0)=100 exp
�

−
(x−x0)2+ (y−y0)2

2s2

�
(44)

where c is a passive scalar which is being convected with known velocity components (u, v) and
n is a coefficient of diffusivity.

In this particular example, we look at the diffusion of a Gaussian hill in a uniform rotating
field. The parameters used have been taken from the work of Pudykiewicz and Staniforth [23].
These are: V is a 3200 km×3200 km domain, the components of the velocity field are
u= −vy and v= −vx where v=10−5 s−1 is the angular velocity. In an infinite plane the
analytical solution of this problem is given as:
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c(x, t)=
100

1+ (2nt/s2)
exp

�
−

x̄2+ ȳ2

2(s2+2nt)
�

(45)

where

x̄=x−x0 cos vt+y0 sin vt

ȳ=y−x0 sin vt+y0 cos vt

(x0, y0)= (−800 km, 0 km) (center of initial condition)

s2=2·1010 m2

Table I shows the variation with the grid size h0 of the relative L2-error of the numerical
solution for various experiments we have conducted with CFL numbers of 2 and 10. We define
such error as:�&

V
�u−uh �2 dV

�1/2

�&
V

�u�2 dV
�1/2 .

Columns 2–5 correspond to the results obtained by FEMMC with quadratic interpolation for
the convective step and bilinear elements for the diffusive step. The last column shows results
of an Eulerian scheme that uses bilinear finite elements in space and Crank–Nicolson in time.
It is clear from this table that the FEMMC error is approximately between 3 and 6 times
smaller than the error obtained with the Eulerian scheme. In addition, the FEMMC error
decreases roughly by a factor of 4 as we move down from row to row of the table (with the
exception of the last row for the column corresponding to CFL=2 and n=4 · 104 m2 s−1).
For our experiments Dt=O(h0) which means that the convergence of the FEMMC is
quadratic both in time and space. Note that the quadratic convergence of the Eulerian scheme
can only be achieved as the grid size becomes very small (h0/4, h0/8).

Table I. L2-error after one revolution of Gaussian hill (h0=100 km)

h FEMMC ECN

n=104 m2 s−1n=104 m2 s−1 n=4 · 104 m2 s−1

CFL=10 CFL=2CFL=2 CFL=10 CFL=2

0.216070.104990.29840 0.89030.28983h0

0.05407 0.4513h0/2 0.08785 0.07955 0.02296
h0/4 0.14140.014050.006870.020090.02452

0.03670.004500.003280.005010.00684h0/8
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5.2. Burgers equation with 6iscosity

Our next test case is related to the capacity of the FEMMC algorithm to simulate the
formation of strong discontinuities. To this end, we solve the problem:

(u
(t

+u
(u
(x

+v
(u
(y

=n
�(2u
(x2+

(2u
(y2

�
in V× (0, T) (46)

with periodic boundary conditions and the initial condition

u(x, y, 0)=
1
4
+

1
2

sin p
�x+y

2
�

in V (47)

The solution domain V is the square (−2, 2)× (−2, 2) and the grid size used h=1/40. The
solution of Equation (46) exhibits the formation of discontinuities as n decreases. As n�0, the
solution tends to the solution of the inviscid equation which consists of a shock that develops
at time t=2/p. Figure 1 shows numerical results for this case using bilinear elements for the
diffusion term. As in the inviscid case, we note that two discontinuities become more evident
as n decreases. A sectional cut from the lower-left corner to the upper-right corner of the
domain shows the profile of the solution along the diagonal. It is clear that the algorithm
captures the position of the shock quite well.

5.3. Na6ier–Stokes equations

In this sub-section, we present numerical results for flows developed in a lid-driven square
cavity and around a circular cylinder positioned inside a straight channel with rigid
boundaries. For these test cases, we have used unequal order Q2/Q1 finite elements, i.e.,
continuous quadratic and continuous bilinear Lagrange quadrilateral elements for velocity and
pressure respectively. All algebraic systems were solved using the Conjugate Gradient Method
with Incomplete Cholesky Decomposition (ICCG) and a convergence criteria of 10−15. In
general, the systems associated with the solution for the velocities required not more than ten
ICCG iterations. For the Poisson problems, the number of ICCG iterations were approxi-
mately 60 or less for all cases presented in this work. Note that we have identified the
conjugate gradient solver for the algebraic systems as ICCG and as CGA the solution
algorithm outlined in Section 4.2. All computations were carried out using a time step Dt=0.1.

5.3.1. Lid-dri6en ca6ity flow in two dimensions. For the computations in this case, the cavity
dimensions in both directions and the lid velocity were set equal to unity. The Reynolds
number Re was then defined as 1/n. Calculations were carried out using the grids defined in
Table II. All simulations were conducted for a time period of 150 s. The lid horizontal velocity
was regularized in time using a linear function in the interval [0, 25]. Average number of
iterations given below were calculated from t1=0 and the time t2 at which the CGA started
to converge with only one iteration.

Table III presents the number of iterations required for the CGA to converge to a tolerance
of 10−3 in the maximum norm, i.e., max �9 · u�510−3. We have spanned a relatively wide
spectrum of Reynolds numbers. In so doing, we have attempted to expose the computational
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Figure 1
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Table II. Computational conditions

Lid-driven cavity flow in two dimensions

Nodes pMesh Nodes (u, v)

30×30 961 3721
62×40 2583 10 125

Table III. Average number of iterations CGAa

Lid-driven cavity flow in two dimensions

Re=6000 Re=8000 Re=10 000Re=100 Re=1000 Re=2000 Re=3200 Re=5000

6.76 3.14 3.77 7.45 7.334.55 3.65 3.36

a Mesh 30×30.

capabilities of the method presented in this work. Note that initially the number of CGA
iterations decreases as the Reynolds number (Re) increases. Beyond a critical value of Re, the
number of iterations increases again. In spite of this, fast convergence is observed throughout
the Re range used. It is interesting to note that from Re=6000 to Re=8000 there is a pronounced
increase in the number of iterations of the CGA followed by a tendency to level off. These two
values of the Reynolds number coincide with those identified in the experimental investigations
of Koseff and Street [24] as the range where parts of the flow appeared to change from laminar
to turbulent.

Figure 2. Cavity flow. Re=3200 and Re=10000. Streamlines.
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Figure 2 shows streamline contours for Re=3200 and Re=10000 for the 62×40 mesh.
The maximum CFL condition for this set of results is 6.2 and the scheme exhibited no sign of
any instabilities. This fact is evidence for the good stability of our FEMMC even with
quadratic elements. Velocity profiles (Figures 3 and 4) at the mid-lines of the cavity are
compared with the experimental three-dimensional results by Koseff and Street [25]. Good
agreement is obtained for the finer mesh. Numerical results by Ghia et al. [26] are also
presented in these illustrations.

Figure 3. Cavity flow. Re=3200. Velocity profiles at mid-vertical and horizontal lines.
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Figure 4. Cavity flow. Re=10 000. Velocity profiles at mid-vertical and horizontal lines.

5.3.2. Flow around a circular cylinder at Re=100. In this section we present results correspond-
ing to flow around a circular cylinder at Re=100. Figure 5 shows the relatively coarse finite
element grid used [27]. Domain dimensions used in the computations for this case are available
from this figure. Uniform flow was assumed at the entrance of the channel. At the open
boundary we have imposed the pseudo-stress condition −pn+n((u/(n)=0. For all remain-
ing boundaries, we have used u=0. The flow simulation was carried out for 3000 time steps
(05 t5300).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 439–464



A. ALLIEVI AND R. BERMEJO460

Figure 5. Flow around circular cylinder. Re=100. Finite element mesh.

The computational conditions for this case are shown in Table IV. For this mesh, the
number of iterations required for the scheme to converge to a tolerance of 10−3 in the
maximum norm have been summarized in Table V. About 83% of the entire run required less
than 20 iterations to converge.

Figures 6 and 7 show the time evolution of streamlines as the flow progresses past the
cylinder. Initially, a pair of symmetric vortices grow behind the cylinder. The vortices become
noticeably asymmetrical at approximately t=20 s. From then onwards, they reach unstable
proportions and begin shedding alternatively, initiating the Karman vortex street. It should be

Table IV. Computational conditions flow around a circular cylinder at Re=100

Re Mesh Nodes p Nodes (u, v)

4970128550×24100

Table V. Performance of CGA

Flow around a circular cylinder at Re=100

% of TotalNumber of
iterations Nit

NitB5 21.69651
55NitB10 164 5.46

1148 38.24105NitB15
17.26518155NitB20
10.86326205NitB30

25 0.83305NitB40
2405NitB50 0.07

168Nit\50 5.59
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Figure 6. Flow around circular cylinder. Re=100. Streamlines.

pointed out that no artificial triggering was necessary to initiate the asymmetry in the wake nor
to provoke vortex shedding.

Force coefficients are shown in Figure 8. The initial sequence of events discussed in the
context of Figure 6 corresponds to an essentially zero lift coefficient during the first 20 s of the
run, followed by an oscillating tendency of rapidly increasing amplitude. A periodical motion
with fairly uniform amplitude is obtained past 80 s. For this section of the curve, the period
of oscillation is 6 s and results in a Strouhal number of 0.167. Note that the corresponding
time interval for the drag coefficient exhibits fluctuations of higher frequency than the lift. To
summarize, we present in Table VI a comparison of our results with numerical and experimen-
tal data compiled by Graham [28]. Good agreement is obtained with all variables presented in
this reference.
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Figure 7. Flow around circular cylinder. Re=100. Streamlines.

6. CONCLUSIONS

A finite element method based on the MMC has been developed based on a more economical
and efficient interpolatory convective step. A series of numerical experiments including the
unstationary Navier–Stokes equations show promising results when compared with numerical
and experimental observations. Experiments for convection–diffusion and Burgers equations
show evidence of our method’s sound error, convergence and accuracy characteristics. Solu-
tions of the incompressible Navier–Stokes equations for lid-driven cavity flow at a wide range
of Reynolds numbers and for flow around a circular cylinder at Re=100 compared very
favorably with published data.
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Figure 8. Flow around circular cylinder. Re=100. Force coefficients.

Table VI. Comparison of results

Flow around a circular cylinder at Re=100

Graham [24] This work

0.16 0.167Strouhal number
1.25–1.46Mean drag coefficient 1.295

RMS of fluctuating drag coefficient 0.0042–0.04 0.0085
0.157–0.39 0.162RMS of fluctuating lift coefficient
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13. C. Foias, C. Guillopé and R. Temam, ‘Lagrangian representation of the flow’, J. Diff. Eqns., 57, 440–449 (1985).
14. J.P. Huffenus and D. Khaletzky, ‘A finite element method to solve the Navier–Stokes equations using the method

of characteristics’, Inter. J. Numer. Methods Fluids, 4, 247–269 (1984).
15. R. Bermejo, ‘A Galerkin-characteristic algorithm for transport-diffusion equations’, SIAM J. Numer. Anal., 32, 425

(1995).
16. C. Temperton and A. Staniforth, ‘An efficient two-time level semi-Lagrangian semi-implicit integration scheme’,

Q. J. R. Meteorol Soc., 113, 1025–1039 (1987).
17. A. Robert, ‘A stable numerical integration scheme for the primitive meteorological equations’, Atmos–Ocean, 19,

35–46 (1981).
18. V. Girault and P.A. Raviart, ‘Finite element methods for Navier–Stokes equations: theory and algorithms’, in Finite

Element for Na6ier–Stokes Equations, Springer, Berlin, 1986.
19. R. Verfurth, ‘Error estimates for a mixed finite element approximation of the Stokes equations’, RAIRO Numer.

Anal., 18, 175–182 (1984).
20. R. Stenberg, ‘Error analysis of some finite element methods for the Stokes problem’, Math. Comp., 54, 495–508

(1992).
21. J.P. Bercovier and O. Pironneau, ‘Error estimates for finite element solution of the Stokes problem in the primitive

variables’, Numer. Math., 33, 211 (1979).
22. P. Ciarlet, ‘The finite element method for elliptic problems’, in The Finite Element Method for Elliptic Problems,

North-Holland, Amsterdam, 1978.
23. J. Pudykiewicz and A. Staniforth, ‘Some properties and comparative performance of semi-Lagrangian method of

Robert in the solution of the advection–diffusion equation’, J. Atmos. Sci., 31, 371–393 (1984).
24. J.R. Koseff and R.L. Street, ‘Visualization studies of a shear driven three-dimensional recirculation flow’, ASME

J. Fluids Eng., 106, 21 (1984).
25. J.R. Koseff and R.L. Street, ‘The lid-driven cavity flow: a synthesis of qualitative and quantitative observations’,

ASME J. Fluids Eng., 106, 390 (1984).
26. U. Ghia, K.N. Ghia and C.T. Shin, ‘High-Re solutions for the incompressible flow using the Navier–Stokes

equations and a multigrid method’, J. Comput. Phys., 48, 387 (1982).
27. A. Allievi and S.M. Calisal, ‘A Bubnov–Galerkin formulation for orthogonal grid generation’, J. Comput. Phys.,

98, 163 (1992).
28. J.M.R. Graham, ‘The effects of waves on vortex shedding from cylinders’, IUTAM Symposium on Bluff-Body Wakes,

Dynamics and Instabilities, Gottingen, Germany, 1992.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 439–464


